
D. SCHWARZENBACH et al. 569 

of the refined parameters. They must be reported in as 
much detail as the diffraction data. 

Suggested translations of the English terms uncertainty 
and standard uncertainty are 

Unbestimmtheit, Standardunbestimmtheit in German; 
incertitude, incertitude-type in French; 
Heonpe~e~iiirmOCTr:,, cTan,~apTr~a~l aeonpe~;ea~rt- 

rtocrr~ in Russian. 

References  

ABRAHAMS, S. C. & MAr~H, P. (1987). Acta Cryst. A43, 
265-269. 

ISO (1993). Guide to the Expression of Uncertainty in Measure- 
ment. International Organization for Standardization (ISO), 1 rue 
de Varemb6, CH-1211 Gen~ve 20, Switzerland. 

PRICE, E. & S~.X~ELMAN, C. H. (1992). International Tables for Crys- 
tallography, Vol. C, pp. 622--624. Dordrecht: Kluwer Academic Pub- 
lishers. 

SCHWARZENBACH, D., ABRAHAMS, S. C., FLACK, H. D., GONSCHO~C., 
W., HAHN, T., HtrML, K., MARSH, R. E., P~aNCE, E., ROBERTSON, B. 
E., ROLLETr, J. S. & WILSON, A. J. C. (1989). Acta Cryst. A45, 63-75. 

TAYLOR, B. N. & KUVATr, C. E. (1993). Guidelines for Evaluating 
and Expressing the Uncertainty of NIST Measurement Results. NIST 
Technical Note 1297. National Institute of Standards and Technology, 
Gaithersburg, MD 20899, USA. 

WILSON, A. J. C. (1992). International Tables for Crystallography, Vol. 
C, pp. 583-584. Dordrecht: Kluwer Academic Publishers. 

Acta Cryst. (1995). A51, 569-585 

Dynamical Theories of Dark-Field Imaging Using Diffusely Scattered Electrons in 
STEM and TEM 

BY Z. L. WANG* 

Metallurgy Division, National Institute of Standards and Technology, Building 223, Gaithersburg, MD 20899, USA 

(Received 26 September 1994; accepted 13 February 1995) 

Abstract 

Dynamical theories of atomic number sensitive image (or 
Z-contrast image) formed by thermal diffusely scattered 
(TDS) electrons are proposed based on first-principles 
considerations. 'Exact' theories are derived for simulat- 
ing images obtained either in scanning transmission 
electron microscopy (STEM) using an annular dark-field 
detector or in transmission electron microscopy (TEM) 
using an on-axis objective aperture under hollow-cone 
beam illumination. The atom thermal vibrations are 
described using lattice dynamics with consideration of 
phase correlations. The effects that are comprehensively 
covered in the theory include: dynamical diffraction of 
the beam before and after TDS, thickness-dependent 
beam broadening or channelling, Huang scattering from 
defect regions, coherence of the thermal diffusely 
scattered electrons generated from the atomic layers 
packed within the coherent length, multiphonon and 
multiple phonon excitations, and the detector geometry. 
Simplified theories have been derived from this unified 
approach under various approximations. It has been 
shown that the incoherent imaging theory is a much 
simplified case of the practical imaging condition, and 
can be applied only for qualitative image interpretation. 
The coherent length in the z direction varies with the 
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change of atomic mass in the column. It is thus possible 
that the z coherence may disappear for heavy elements. 
Finally, the theory of Huang scattering in high-angle 
dark-field TEM imaging has been illustrated, and the 
theoretically expected results have been observed 
experimentally. 

I. Introduction 

Atomic number (or projected mass thickness) sensitive 
high-angle dark-field (HADF) images of crystalline 
materials have been performed in transmission electron 
microscopy (TEM) (Bentley, Alexander & Wang, 1990; 
Treacy, 1993; Otten, 1991) and scanning transmission 
electron microscopy (STEM) (Pennycook & Jesson, 
1990; Xu, Kirkland, Silcox & Keyse, 1990; Liu & 
Cowley, 1991). In STEM, the image is formed by 
collecting high-angle diffusely scattered electrons using a 
high-angle annular dark-field (HAADF) detector when a 
small electron probe, of diameter smaller than about 2,~, 
is scanned across the specimen. The image is thus called 
a HAADF-STEM image, or 'Z-contrast' image because 
of the strong dependence of its contrast on atomic 
number. Based on the reciprocity theorem (Cowley, 
1969), an analogous image can be formed in TEM using 
an on-axis objective aperture under hollow-cone beam 
illumination. Z-contrast imaging has attracted great 
attention because of its potential for providing chemi- 
cal-sensitive structural information at atomic resolution. 
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Determination of crystal structures based on HAADF- 
STEM images strongly relies on quantitative interpreta- 
tion of the image contrast. The simplest model assumes 
that the image contrast is the convoluted result of the 
electron probe with a specimen-dependent projected 
scattering power function, so that the image contrast is a 
map of the projected mass thickness (Pennycook & 
Jesson, 1990). This is the incoherent imaging theory, 
which ignores the broadening and dynamical diffraction 
effects of the electron probe, thus the image contrast is 
determined by Z 2, independent of specimen thickness, 
where Z is the atomic number. Studies have been 
performed to examine the mechanism for forming the Z- 
contrast image, and the results have shown various 
features of the imaging technique. 

The theory by Spence, Zuo & Lynch (1989) suggests 
that the interference of high-order Laue-zone (HOLZ) 
Bragg reflections may be important for the formation of 
the image. Dynamical simulations by Wang & Cowley 
(1989) indicate that the characteristics of phase contrast 
imaging may be retained in the image if the HOLZ 
reflections are the dominant factor. Dynamical multislice 
calculations based on the Einstein model and single- 
phonon-scattering model have shown that thermal diffuse 
scattering (TDS) is the key contributor for forming the 
atomic number sensitive image; dynamical diffraction of 
the electron probe by the specimen easily breaks the Z 2 
rule even for specimens thinner than 10 nm (Wang & 
Cowley, 1990). Further theoretical studies have shown 
that the contribution made by multiphonon scattering at 
high angles is comparable to that made by single-phonon 
scattering (Hall, 1965; Amali & Rez, 1992; Pennycook & 
Jesson, 1991). Experimental measurements by Hillyard, 
Loane & Silcox (1993) and Hillyard & Silcox (1993) 
have shown the strong dependence of the image contrast 
on specimen thickness, indicating the importance of 
beam broadening and diffraction effects. Recent studies 
by Jesson & Pennycook (1993) and Treacy & Gibson 
(1993) based on kinematical scattering theory have 
suggested the importance of longitudinal coherence 
along the beam direction, so that the imaging signal is 
determined by the sum of scattering amplitudes from the 
atom layers packed within the coherence length. The 
coherence comes from the phase coupling of atom 
vibrations along the beam direction and the detection 
geometry of the annular dark field (ADF) detector, so 
that the incoherent imaging model may give an incorrect 
answer in practice. 

HADF-TEM and HAADF-STEM images of disloca- 
tions have shown anomalous behavior (Cowley & 
Huang, 1992; Perovic, Howie & Rossouw, 1993; Wang, 
1994). It is surprising that dislocations and stoichiometric 
grain boundaries show bright contrast in the image, so 
that the image contrast is not necessarily a map of the 
local chemical composition. It has been shown that the 
local lattice distortion is a source for generating diffuse 
scattering (or Huang scattering) and, more importantly, 

the final image contrast is determined by the diffracting 
condition set up for on-axis bright-field imaging (Wang, 
1994). In this case, the HADF-TEM image is called the 
Huang scattering contrast image and is a direct result of 
the diffuse scattering produced by the static displace- 
ments of the crystal atoms owing to the presence of 
defects, dislocations or lattice relaxation (Wang, 1994). 
The HADF-STEM technique shares many properties 
with conventional diffraction contrast imaging. There- 
fore, a full dynamical calculation is required for image 
interpretation. 

All the studies listed above have shown the various 
features of high-angle dark-field imaging using diffusely 
scattered electrons. There is not, however, a dynamical 
theory that can comprehensively cover all these features 
in a single approach. It is desired that the dynamical 
diffraction of the probe, thickness-dependent beam 
broadening, longitudinal coherence due to phase correla- 
tion of atomic vibration, and the Huang scattering effect 
are introduced in a single theoretical scheme. This paper 
is thus intended to introduce a theory that is best suited 
for serving such purposes. With the Schr~Sdinger equation 
as starting point, an 'exact' dynamical theory based on 
the original scheme of Fanidis, Van Dyck, Coene & Van 
Landuyt (1989) is introduced (§2.1) and the theory is 
given in a form best suited for numerical calculation. 
Then the simplified models are derived from the theory 
under various approximations. In §2.2, an approximated 
multislice theory is given in order to reduce the amount 
of numerical calculations. In §3, the dynamical theory for 
atomic number sensitive imaging in TEM is outlined. 
Finally, the theory of Huang scattering in HADF-TEM 
imaging is illustrated. The theoretically expected results 
are compared with the experimental observations. 

2. Imaging using diffusely scattered electrons in 
STEM 

The HAADF-STEM image is formed by collecting the 
high-angle scattered electrons using a ring-shape annular 
detector in the diffraction plane when the small electron 
probe is scanned across the crystal lattice (Fig. 1). The 
electron detector is defined by inner (ul) and outer (u2) 
angular cut-offs, and is called annular dark-field (ADF) 
detector. The electron probe is scanned over the speci- 
men using deflection coils. In any subsequent deflection 
plane, a convergent-beam electron diffraction (CBED) 
pattern of the region of the specimen illuminated by the 
beam is formed for each scanning position. The signal 
detected by the ADF detector is displayed on a cathode- 
ray tube with a scan synchronized with that of the 
incident beam on the specimen, which is the HAADF- 
STEM image of the specimen. 

The image is produced by high-angle Bragg scattered 
Huang scattering and thermal diffusely scattered elec- 
trons. The contribution made by high-angle Bragg 
reflections and Huang scattering can be calculated 
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following conventional dynamical diffraction theory 
and this image intensity due to elastic scattering lels 
(Wang & Cowley, 1990) is 

lels -- f dulq30( u, z - d)12O(u), (1) 

where D(u) is the detection function of the ADF detector, 

1 forul  < u < u 2  
D ( u ) =  0 otherwise. 

(2) 

• 0(u, z = d) is the two-dimensional Fourier transform of 
the electron wave function at the exit face (z = d) of the 
crystal and u is a two-dimensional reciprocal-space 
vector. There are several mechanisms for generating 
high-angle scattered electrons. The high-order Bragg 
reflections preserve many characteristics of the conven- 
tional phase contrast, thus their contribution to the Z- 
contrast image needs to be minimized. The contribution 
of Huang scattering from the defect regions can be 
introduced in the multislice calculation by using the 
modified phase-grating function for each slice, because 
the static atom displacement due to defects is time 
independent. For crystals free of defects, the contribution 
from TDS electrons is the dominant factor. The short- 
range time-dependent coupling of atom vibrations makes 
TDS approximately an incoherent scattering process, so 
that the image contrast can be qualitatively interpreted 
based on the incoherent imaging theory. 

Diffuse scattering at high angles can also be generated 
by electron-electron scattering (e-e, or Compton scatter- 
ing) (Eaglesham & Berger, 1994; Bleloch, CasteU, 
Howie & Walsh, 1994). This scattering is a less localized 
scattering process in comparison to TDS, thus, the e-e 
scattered electrons mainly contribute to the background 
in the image. High-resolution structuraly related informa- 
tion is produced by localized TDS and Huang scattering. 
Therefore, this paper is focused on the images formed by 
TDS and Huang scattered electrons. 

In general, quantitative interpretation of the image is 
rather complex because of the convoluted results of the 
various effects, such as beam broadening, dynamical 
diffraction and phase coupling between atom vibrations. 

electron probe 
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Fig. 1. Schematic diagram showing HAADF-STEM imaging using 
diffusely scattered electrons. 

It is thus necessary to consider all the possible 
components of the scattering process. The theories 
presented below are mainly focused on the multislice 
approach because of its convenience for image computa- 
tion. Dynamical diffuse scattering theories using Green- 
function and Bloch-wave approaches have been given 
elsewhere (Wang, 1995; Wang & Li, 1995). 

2.1. An 'exact' dynamical theory 

The classical theory for treating TDS is based on the 
'frozen' lattice model (Hall & Hirsch, 1965), in which all 
the atoms are seen as if stationary at instantaneous 
positions by each incident electron, because the vibration 
period of an atom is about 100 times longer than the 
interaction time of the electron with the crystal, thus there 
is almost no atom movement when the electron interacts 
with the crystal. The experimentally observed image is a 
time average of the images produced by the crystal 
lattices of different thermal vibration configurations. The 
scattering of each instantaneous lattice configuration 
is approximated as time independent, so that the 
Schrtidinger equation applies (Wang & Bentley, 1991; 
Wang, 1992). 

For crystals containing defects or interfaces, the 
multislice theory (Cowley & Moodie, 1957) is always 
applied for simulating the images. The crystal is cut into 
many parallel slices of equal thickness along the foil- 
thickness direction, or z-axis direction (Fig. 2), the 
diffraction of the electron beam by the crystal is 
calculated consecutively slice-by-slice up to the exit face 
of the crystal, provided the backscattering is ignored for 
high-energy electrons. In this approach, the static 
displacements of atoms near the defect region can be 
conveniently introduced in the calculation and the only 
time-dependent process is TDS. 

2.1.1. Basic equations. For convenience, the real- 
space multislice theory proposed by Fanidis et al. (1989) 
and Fanidis, Van Dyck & Van Landuyt (1992) is used 

M)F 

~ 
e lec t ron  probe 

Fig. 2. Schematic diagram showing the multisUce approach for 
calculating electron diffraction in thin crystals. 
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and further developed here. As will be shown below, this 
theory not only preserves the full dynamical description 
of the TDS process but also makes it possible to perform 
the time averaging of scattering intensity before any 
numerical calculation. We now start from the 
Schrtidinger equation 

[V 2 + 4 ~ ( U  + K02)lqJ0(r) = 0, (3) 

where _K o is the electron wave number and U = 
(2mee/h 2) V, where V is the crystal potential. V is 
assumed to be an arbitrary function in accordance with 
the crystal structure, and can be periodic or non-periodic. 
For convenience, the time-independent and time-depen- 
dent components of the crystal potential are separated so 
that U = U 0 + AU(t). Under the high-energy approxi- 
mation, by writing qt0(r ) = exp(2zriK o • r)~0(r ), one 
can approximate (3) as 

O~o(r)/Oz ~ ([8 + 4rr2(U0 + AU)l~/,0(r ), (4) 

where ( =  i/4rrKoz = (iKo/Koz)(;~/4rr), where 2 is the 
electron wavelength; 

2, = V 2 + 4rriKob. V b 

= - -  K 0 Ox 2 + ~ + 4 r r i  K 0 x ~ +  0y~ (5) 

is an operator and b = (x, y) is the coordinate in the 
image plane. In order to find the solution of (4), a 
convenient method is to separate the wave function into 
two components (Cowley, 1988), one part is the 
thermally averaged wave function that is independent 
of the instantaneous vibration status of the crystal lattice 
and the other part is a small deviation which is strongly 
affected by the atom vibration, 

• o(r) = ~o(r) + 8~0(r), (6) 

where ¢30(r ) = (~o(r)), (Sff~0(r)) = 0 and () denotes the 
time average. The boundary conditions are 
~oCo, 0) = 8m0 and 8~0(b, 0) = 0. Substituting (6) into 
(4), two coupled equations are obtained (Fanidis et al., 
1989, 1992): 

0 -  
~zz~O = ¢(,~ + 4n2Uo)(/3o + ((AU(~o) (7) 

and 

~zS~0 --~ ([(,~ + 4zr2Uo)8@o + 4 ~ A U ~  o 

+ 4n2(zaUS@0 - (zaus~0))l. (8) 

We first consider the solution of the time-dependent 
component. Since the term (AUS@ 0 - (AUS@o)) corre- 
sponds to the effects of multiple diffuse scattering, it can 
be ignored under the first-order approximation, thus, 

0 
Oz 8@° -~ ([(2' + 4 ~  Uo)8@ o + 4n 2A U ~30]. (9) 

In (9), the A U term is the source for generating TDS and 
( 8  + 4rraUo) is responsible for the elastic re-scattering of 
the TDS electrons. In dealing with the elastic re- 
scattering after TDS, it assumes that the crystal potential 
U o is independent of z. This approximation explicitly 
means that the high-order Laue-zone (HOLZ) reflections 
have been ignored. Thus, the solution of (9) can be 
readily written (Fanidis et al., 1989) as 

z 

8~0(b, z ) _~ 4~g" fdz'Op(b,z-z')[AUCa, z',t)~o(b,z')], 
0 

(10) 

where the operator Op is defined as 

Op(b, z - z') = exp[(( 2, + 4zr2 Uo)(Z - Z')]. (11) 

The physical mean_ing of (10) is stated below. The Bragg 
scattering wave 4)0 is diffusely scattered at z' by ZlU. 
The subsequent Bragg re-scattering of the diffusely 
scattered electrons from z' to z is contained in the Op 
operator. The multislice calculation of the operator will 
be given in §2.1.3. The integral on z' is to sum over the 
TDS waves generated when the electron travels from 
z -  0 to z -  z. For cases where the electron has lost 
energy (Yoshioka, 1957), the general form of (10) has 
been given by Coene & Van Dyck (1990). 

2.1.2. HAADF-STEM image. The HAADF-STEM 
images are formed by collecting the high-angle diffusely 
scatterd electrons in the diffraction plane using a ring- 
shape annular detector. For a scan position bp of the 
incident electron probe, the intensity distribution in the 
diffraction plane is the square of the modulus of the 
Fourier transform of (6), 

I(T) = I~0(lr, z = d)l  2 + (18~o0: ,  z = d)12), (12 )  

where • is a two-dimensional reciprocal-lattice vector in 
the diffraction plane; the first term includes the Bragg 
reflections, the second term is TDS and d is the specimen 
thickness. In general, the deviation potential can be 
written as a superposition of those for all the atom sites, 
i.e. A U ( r , t ) =  ~-~AU,:(r--r,:,t), where r,~=(b~,z,:) 
indicates the position of the atom in the crystal. We now 
use the solution in (10) to get the angular distribution of 
TDS electrons, 

ITDS(lr) = (18~0(,, Z = d)l 2) 

= 1 4 z t 2 , 1 2 ( l ~ F ( i d z ' O p ( b , d - z ' )  

x [AU~(b - b~:, z' - z~, t)C30(b, z')] , 

(13) 

where F denotes the two-dimensional Fourier transform. 
Equation (13) can be simplified based on the approxima- 
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tion below. In general, the distribution of the electron 
wave may not be significantly affected by the scattering 
of a single-atom layer. Also, the deviation potential 
A U~ is a localized function with a spatial variation of 
subatomic dimension. Thus, along the beam direction (z- 
axis direction), A U~ is the only rapidly varying function 
within the thickness of a thin slice. Therefore, the 
dynamical diffraction effect of the atom layer can be 
ignored, so that the integration on z' is considered to act 
only on AU~. Equation (13) is approximated as 

I T D S ( ~ r )  " ~  14zr2(12(l~ F[Op(b, d-z,~) 

x AU,:(b-b,:, t)430(b , z,:)] 2~ 
/ 

-- 14zr2(I 2 ~ ~ f db f db' exp[-2zri~r. (b-b ' ) ]  
r r '  

x (tOp(b, d-z~)[AU~(b-b~, t)430(b , zK)]} 

x {Op(b', d-z~,)[AU~,(b'-b,e, t)43~(b', z~,)]}), 

(14) 

where A U , : ( b - b , : , t ) =  f dz'AU,:(b-bK, z ' - z ~ , t  ) is 
the projected atomic potential. Since b and b' are 
two distinct variables so that Op(b,d-z~) and 
Op (b', d - z~,) commute, 

]TDS00 " -  14~(I 2 ~ ~ f db f rib' exp[-2zrilr • (b-b ' ) ]  
r r '  

x tOp(b, d-z~)Op(b', d - z,e)[(AU,~(b-bK, t) 

x AU,e(b'-b,e t))430(b , -* ' , z ~ ) ~ o ( b ,  z~,)]}. 

(15) 

This equation gives the angular distribution of the TDS 
electrons in the diffraction pattern. The physical meaning 
of (15) can be described as follows. The real-space wave 
function of the elastic scattered wave at depth z is 430; 
the source for generating diffuse scattering at the ~h  
atom site is [AU~g)0(b, z~)]. The subsequent dynamical 
diffraction of the diffusely scattered electrons for a 
thickness d -  z~ is included in the Op operator (see 
§2.1.3). The time-average term (zlU,~zlU,~,) is the result 
of phase coupling between the atom vibrations, thus 
determining the coherent scattering behavior of the 
diffusely scattered electrons generated from atom sites 
k: and x'. The beam broadening/channeling effect is 
contained in 430(b,z) following the Cowley-Moodie 
multislice calculation, the modulus squared of which is 
the probe shape at depth z. 

In STEM, if the incident electron probe is centered 
at bp and the elastic wave at depth z is denoted by 
430(b- bp, z), the contribution of TDS electrons to the 
HAADF-STEM image is 

ITDS(bp) = f dr ITDS0r)D(z) 

-- 14zr 2(I 2 ~ ~ f db f db' D(b - b') 

x tOp(b, d-z~)Op(b', d - z~,) 

x [(AU,:(b-b,:, t)AU,e(b'-b,:, , t)) 

x 43o(b-bp, zK)~;(b'-bp, z,:,)]}. (16) 

This expression has fully incorporated the dynamical 
scattering of the electrons before and after TDS. No 
approximation was made in considering the phonon- 
dispersion relation. The approximations made in deriving 
(16) are high-energy electron diffraction without back- 
scattering and first-order thermal diffuse scattering. The 
calculations of Op and (AU,~AU,:,) will be given in 
~2.1.3 and 2.1.4, respectively. Equation (16) is the 
unified imaging theory of HAA F-STEM, which can be 
applied to calculate the images formed by either low- or 
high-angle TDS electrons. A few simplified cases of (16) 
are considered below in order to illustrate its application. 

Case a. No dynamical diffraction after TDS, i.e. 
Op(b, d - z~) = 1. Thus, 

ITDS(bp) --~ 14~r2(12 ~ ~ f db f db' O(b - b') 
r r '  

x [(AU,:(b-bK, t)AU,e(b'-b,~,, t)) 

x 43o(b - bp, z,:)43~(b' - bp, z,:,)]. (17) 

It is apparent that the coherence of the HAADF-STEM 
image is partly determined by the phase coupling 
between atom vibrations and partly determined by the 
detection geometry of the ADF detector, as expected 
from the kinematical scattering theory (Jesson & 
Pennycook, 1993; Treacy & Gibson, 1993). 

Case b. No dynamical diffraction after TDS, and every 
TDS electron and only TDS electrons are detected, i.e. 
D(b - b') -- 8(b - b'). Thus, 

ITDS(bp) ~-- 14n'2(12 ~ ~ f db [(AUK(b-b,~, t) 
r 

x AUK,(b-b,e , t))43o(b - bp, z,:) 

x 43;(b - bp, z~,)]. (18) 

The width of AU,~ is much smaller than the interatomic 
distance, thus for the atoms located in the same crystal 
slice (i.e. the same depth z,~) 

(AU,:(b-b,(, t)AU,e(b--b,e , t)) ~ (IzaU~(b-b~, t)12)8,,:,. 

(19) 

This means that the TDS electrons generated from the 
atoms located in different atomic columns of the same 
slice are approximately incoherent (see Fig. 3) (Wang, 
1992; Jesson & Pennycook, 1993; Treacy & Gibson, 
1993). This transverse incoherency is the result of 
assuming D ( b ) =  8(b), which is determined by the 
detection geometry of the ADF detector. The condition 
under which D(b) = 8(b) will be discussed in §2.1.5. 

For the atoms constrained within the same column 
along the beam direction, however, the coherence of the 
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TDS electrons may be preserved (Fig. 3), but the 
coherent length is determined by the phonon-dispersion 
characteristics of the crystal, as will be discussed in 
§2.1.5. Thus, (18) becomes 

ITDS(bp) "" 14~(I 2 ~ f db [ ( IAU,(b-b , ,  t)l 2) 
K 

x I~o(b-bp,  z~)12] + 14zr2(12)--~ ~'~ f d b  

x [ ( .4U,(b-b  r, t)AUK,,(b-b r, t)) 

x ~o(b - bp, z,)&~(b - bp, z¢,)], (20) 

where the sum of to" are limited to the atoms located in 
the same column as the r atom. The first term in (20) is 
the result of incoherent scattering and the second term is 
the coherent scattering from the atoms constrained in the 
same column but located at different depth z, consistent 
with the result obtained based on kinematical scattering 
theory (Jesson & Pennycook, 1993; Treacy & Gibson, 
1993). It is important to note that the first term is 
obtained without making any assumption regarding the 
thermal vibration model of the crystal. Thus, the phase 
coupling between the vibrations of the atoms located in 
the same slice does not affect the image simulation. 
Therefore, the scattering between the atom columns is 
incoherent. This conclusion has been reached earlier 
(Wang, 1992). The numerical calculations of Wang & 
Cowley (1990) have demonstrated the transverse and 
longitudinal coherence in HAADF-STEM images. 

electron probe 

cohere   
@ 

& 
& 

i 
Fig. 3. Transverse incoherence and longitudinal coherence in HAADF- 

STEM imaging. The coherent volume is approximately indicated by 
elliptical packets. The incident-beam direction is z. 

The coherent lengths can be different for the atomic 
columns filled with different elements. This may affect 
the interpretation of image contrast. 

Case c. No dynamical diffraction after TDS and no 
phase coupling between atom vibrations (i.e. the Einstein 
model). Thus, 

ITDS(bp) '~' lazr 2(12 ~ f db f db' D 0 a - b ' )  
K 

x [(AUK(b-b~, t)AU~(b'-bK, t)) 

x ~3o(b - bp, z~)~(b '  - bp, zK) ]. (21.) 

Equation (21) is still unlike the incoherent imaging 
theory even though the Einstein model has been 
assumed. Thus, the detection geometry of the ADF 
detector partly determines the coherence of HAADF- 
STEM imaging. 

Case d. No dynamical diffraction after TDS, no 
phase coupling between atom vibrations and 
D(b - b') = 8(b - b'). Thus, 

ITDS(bp) = 14n2(12 ~ f db [(IAU~(b--b~, t)l 2) 
K 

x 1~30(b - bp, z~)l 2] 

= ~ f db IF(b, z,c)12l~o(b - bp, z~:)l 2 
t l  c 

Ir(bp, zti)l 2 ® I~0(b p, z 2 = t i ) l ,  (22a) 
t l  c 

where the TDS generation function of the ncth slice is 

F2(b, Zn c) = 14zr2(I 2 y~(IV~(b-b,~-u~)-  Vo~(b-b,~)l 2) 

= 14~¢12 ~[ ( IV~(b-b~-u~) l  2) 
13/ 

- I ( - V ~ ( b - b ~ - u D ) 1 2 ] ,  (22b) 

the sum of ct is over all the atoms located in the ncth slice 
and ® denotes convolution. Equation (22a) looks like the 
incoherent imaging theory, in which the total intensity is 
an incoherent sum of those from each individual atom. 
The theory presented by (22) has been applied to 
simulate HAADF-STEM images (Wang & Cowley, 
1990; Konnert & D'Antonio, 1991). 

The atomic number sensitive information is contained 
in the term (IAU~(b-  b~, t)12), which is a measure of 
scattering power of each atom column. The incoherent 
scattering of each column actually maximizes the Z 
sensitivity and makes it possible to identify the atom 
columns directly in the image. 

Case e. No dynamical diffraction after TDS, no phase 
coupling between atom vibrations, D(b --_b') = 8(b - b') 
and no beam broadening [i.e. ~ 0 ( b - b p ,  gK) = 
~o(b - bp, 0)1. Thus, 

ITos(bp) = 14~2(I 2 ~ f db [(IAU~(b-b~, 012) 
K 

x 143o(b - bp, 0)12] 
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= [~ Ir(bp, z.~)12] ® I~0(bp, 0)12 , (23) 

where the term [Y~.c IFI2] is the projected TDS- 
generation scattering of the crystal and I~0(b p, 0)12 is 
the probe shape. This equation is the result of incoherent 
imaging theory. It is thus clear that the incoherent 
imaging model of HAADF-STEM is a very simplified 
case of the practical situation. It also appears that the 
condition D(b - b') = 8(b - b') is vital for the incoher- 
ent imaging model. 

2.1.3. Multislice calculation of the dynamical scatter- 
ing operator Op. The introduction of the operator Op has 
greatly simplified our derivation of the f'mal expression. 
The image simulations require numerical calculations of 
a function in the form 

Op(b,d- zK)X(b, zr) 

=exp{([ ,~ +4:n'2Uo](d-z,~)}X(b,z,~), (24) 

where X(b, z) is assumed to be an arbitrary function and 
the crystal potential U 0 is independent of z (i.e. the 
projection approximation, which holds only for the 
reflections in the zero-order Laue zone). This calculation 
is performed using the Cowley-Moodie multislice 
method. If the crystal is cut into a total of M slices of 
equal thickness Az, i.e. d = MAz, and assume that the 
tcth atom is located in the ncth slice, so that 

Op(b, d - z.)X(b, z.) 
= exp{([V 2 -t- 47riKo b • V b 

+ 4zrZU0](M - n¢)Az} X(b, z,,~). (25) 

ff the slice thickness is sufficiently small so that for each 
slice the (Az(V~ + 4zriKoo • Vb) operator and the scatter- 
ing function 4zt~(AzUo approximately commute, because 
the second-order term is proportional to Az 2, for the ncth 
slice 

x f du f(u)exp(2zriu, b) 

= f duf(u){~[(zaz(V~b+4mKOb. Vb)]m/ml} 

X exp(2n'iu, b) 

=fduf(U)(m~_[-4rr2(Az(u2+2m'Koo'u)]m/m' ) 

x exp(2zriu, b) 

= f duf(u)exp[--4~r2(Az(u 2 + 2Kot , • u)] 

x exp(2n'iu, b) 

= f ( b )  ® P(b, Az), (27) 

where P is a propagation function, 

e(b,  Az) = f du{exp[-rri(u 2 + 2K0b. u)Az2]} 

x exp(2rriu, b) 

= (1/i2Az)exp[Trilb - K O b ) ~ A z I 2 / , ~ A z ] .  (28) 

THUS, 

exp[(Az(V 2 + 4zriKob • Vb)]X (b, z,,) 

[Q0(b, z,,) X (b, z,,~)] ® P(b, Az). (29) 

It is important to note that the right-hand side of (29) is 
just the Cowley-Moodie multislice theory. Finally, 

Op(b, d - z,~) X (b, z,~) 

= e x p  (Az [(V~b +4mKob .  Vb) +4:r/-2U0] X(b, zs) 

M 
-- 1-I exp{(Az[(V~b + 4mqKob • Vt,) + 4rr2U0]} X (b, z~) 

~t / c  

--~ {Q0(b, z M){Q0(b, zu_l)...{[Q0(b, z,c) X (b, zn~)] 

® P0(b, Az)}...} ® P0(b, Az)} Po(b, Az). (30) 

exp[(Az(V 2 + 4zriKob • Vb + 4~U0)]X (b, z,c ) 

_~ exp[(Az(V~ + 4zriKob. Vb) ] 

x exp(4~(AzUo)X (b, z,c ) 

= exp[(Az(V 2 + 4:rriKob" Vb)][Q0(b, z,c)X(b, z,c)], 

(26) 

where Q0(b, z,~) = exp(4zr2(AzU0) is the phase-grating 
function of the slice. The approximation leading to (26) 
has been discussed in detail by Van Dyck (1983). We 
now consider the following operation on an arbitrary 
function f (b)  with Fourier transform f (u)  (Goodman & 
Moodie, 1974; Van Dyck, 1975, 1985; Wang, 1995). 

exp[(Az(V 2 + 4zriK0b. Vb)]f(b) 

= exp[fAz(V~ + 47CiKOb. Vb) ] 

This is just the multislice calculation of the electron wave 
X(b, z) elastically scattered from the ncth slice to the exit 
face of the crystal. Thus, the Op(b, d -  z~) operator 
represents the dynamical diffraction of the electron wave 
from z -- z~ to z -- d. This calculation does not involve 
any time-dependent quantity. Diffraction effects of the 
electron probe and thickness-dependent probe broad- 
ening are completely covered in the multislice calcula- 
tion. Since the phase-grating function Qo can be chosen 
to be different for each slice, it is thus possible to 
introduce any static defects or dislocations in the 
multislice calculation. Therefore, the Huang scattering 
is automatically included. For atoms located in the ncth 
slice, the total number of slice calculations is M - no. For 
the entire crystal, the total number of slice calculations to 
be performed is M, = ~ = I ( M - n ~ ) = M ( M - 1 ) / 2 .  
For M = 50, M t = 1225. 
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It is important to note that the theory has fully 
incorporated the phonon-dispersion relations of the 
crystal and the Einstein model was not assumed. This 
is an important advantage of the theory. In the dynamical 
theory proposed above, the amount of calculation is 
minimized regarding the time average over the TDS 
process, but the amount of elastic multislice calculation is 
increased by a factor of M/2. Therefore, as far as TDS 
is concerned, the amounts of calculation cannot be 
dramatically reduced without making any further 
approximations. 

2.1.4. Coupling between atomic vibrations and co- 
herence in HAADF-STEM imaging. Roughly speaking, 
phonons are the harmonic modes of crystal lattice 
vibrations. The phase coupling between atom vibrations 
is an indication of coherence or partial coherence of the 
thermal diffusely scattered waves generated from the 
adjacent atom sites. This effect is included in the time 
average of the thermal deviation potential. Explicitly 
writing the deviation potential as the difference of 
instantaneous atom potential (U~) with the potential 
averaged over time (U0~), AUK = U~ - U0~, where 
U0, ~ = (U~) (Takagi, 1958), yields 

(zaU(r', t)AU*(r",  t)) 

= Y] Y'~(AU~(1 a - r~, t)AU~(r" - r e, t)) 
r x' 

= ~ y~'~[(U~(r' - r~, t)U~,(r" - re, t)) 
x x '  

- Uo~(r' - r~)U~*e(r" - roe)] 

= 4m2e2/h4 E Y~ f d7 f d e  fe(7) f~5*(Z') 

x exp[2zri7. (r '  - ro~ ) - 27ri7'. (r" - roe)] 

x { (exp[-2rr i ( ,  • u~ - 7 ' .  ue)]) 

- exp[-W,(7)  - We(Y)]} 

= 4m2e2/pt 4 ~_, y~ f d7 f d'dZ(7)f~*(v'  ) 
r r '  

x exp[2zri7 • (r '  - r0~ ) - 2zd7' • (r" - roe)] 

x e x p [ - W ~ ( 7 ) -  We(d)] 

x {exp[4zr2((7. u~)(z', ue))] - 1}, (31) 

where f [ (7)  is the electron scattering factor of the xth 
atom, W~(7) = 2zr 2 (17" u~ I 2) is the Debye-Waller factor, 
r,, and ro~ are the instantaneous and equilibrium 
positions, respectively, of the atom, and the atom 
displacement u,~ = r,~ - r0, :. Under the harmonic oscilla- 
tors approximation, the atom displacement due to 
thermal vibration is written as a superposition of the 
contributions from all the phonon modes (Born, 1942; 
see, for example, Briiesch, 1982) 

u ,  = ~ ~ a , (q ,  i)eq, i C O S [ t O i ( q ) t  - -  2zrq • r0, + Oq,i] , 
q i 

(32a) 

where 

A~(q,/) = [h((ns) + 1/2)/NoM~ogi(q)] 1/2, (32b) 

N O is the number of primitive unit cells, M,~ is the mass of 
the atom and (ns) is the average number of phonons at 
temperature T, 

(ns) = 1/[exp(hogi/kBT ) - 1], (32c) 

q is the wave vector of the phonon and i stands for the 
phonon branch. It can easily be shown that 

((7. u~)(z', ue)  ) = ~ ~-'~ A~(q, i)Ae( q, 0 
q i 

X (7" eq,i)(7', eq, i) 

x cos[2rrq. (ro~ - roe)] 

-- [h/No(M~/lx,) 1/21 

x ~ ~-~[((ns) + 1/2)/o9i(q) ] 
q i 

X (T.  eq, i ) (~ .  eq,i) 

x cos[2zrq. (r0~ - roe)] (33a) 

This function usually decreases with increase of the 
interatomic distance ( r0~ -  roe ). As illustrated in (19), 
only the longitudinal coherence matters to HAADF- 
STEM, thus the condition of 4:rr2((7 • u~)(l a.  u r , ) ) "  0 
gives the coherent length of thermal diffuse scattering, 
leading to the 'cigar'-shaped coherence volume as 
suggested by Treacy & Gibson (1993) (see Fig. 3). 
Calculation of (33a) has been performed by Wang (1995) 
based on the Debye model and the Warren (1990) 
approximation, 

t ~2 1 /2  t • ((z-u~)(* • ue)) --~ a ~ ( m J M e )  z .  z Sl(O~e)/O~e, 

(33b) 

where Si(O) = f0 ° du sin u/u and Ore = 2rrqmlAr~e 1, 
qm is the radius of the first Brillioun zone_, 
IAr~el = I r0~-  r0el is the interatomic distance and a 2 
is the mean square atomic vibration amplitude. Two 
conclusions can be drawn from (33b). Since Si (O)/O 
drops quickly with increasing interatomic distance, as 
shown in Fig. 4, the coherent length for low-angle TDS i s  
much shorter than that for high-angle TDS. The coherent 
length of light elements is larger than that of heavy 
elements because a 2 decreases with increasing atomic 
mass. The coherent length varies with the change of 
atomic mass in the column. It is thus possible that the z 
coherence may disappear for heavy elements. In general, 
the longitudinal coherent length is limited to less than 
four atoms along the z-axis direction (Jesson & 
Pennycook, 1993). 

Equation (31) contains the contributions from single- 
and multiphonon scattering. The multiple phonon 
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scattering, however, has been ignored in the first-order 
scattering theory. 

2.1.5. Detection geometry and coherence in HAADF- 
STEM imaging. We now discuss the conditions under 
which the D(b) function can be approximated as 8(b). 
Consider 

D(b) = f du exp(2:riu • b)D(u) 
u2 2zr 

= f du f d~o u cos(2~rub cos ~o) 
0 0 

ul 2~ 

- f du f dq9 ucos(2zrubcos~o) 
0 0 

(1/b)[u2Jl(27ru2b) - ulJl(2ZrUlb)], (34) 

where Jl(x) is the first-order Bessel function. The outer 
cut-off of the ADF detector is usually large in order to 
detect the large-angle scattered electrons. Thus, the width 
of the D function is mainly determined by the inner cut- 
off of the ADF detector. Since the first zero point of J~(x) 
occurs at x = 3.8317 (Arfken, 1970), the half-width of 
the D function is given approximately by 

b 0 _~ 3.8317/2zru 1 _~ 0.612/01. (35) 

For 100 ke V electrons, 2b 0 _~ 0.9 A for 01 = 50 mrad 
and 2b 0 _~ 0.45 A for 01 = 100 mrad. Since the width of 
the atom potential is less than 1 ~,, then the width of the 
D function cannot be represented by a 8 function unless 
the inner detector angle 01 > 150mrad for 100keV 
electrons. This means that the incoherent imaging theory 
is not exact as far as the size of the detector function is 
concemed. 

2.2. An approximated dynamical theory 

The image calculation can be simplified if the elastic 
scattering of the electrons after inelastic interaction is 
ignored. This may be an excellent approximation because 
the elastic scattering after TDS is approximately limited 
to the ADF detector angular range, provided it is 
sufficiently large; thus, the intensity redistribution in 
the diffraction plane may not affect the signal intensity 
detected by the ADF detector (Wang & Cowley, 1990). 
Equation (17) corresponds to such a case, but the high- 
order TDS is not included. In this case the Cowley- 
Moodie multislice theory is more convenient to approach 
the problem. 

Based on the frozen lattice model, the electron wave 
before and after being scattered by a crystal slice of 
thickness Az at depth z is correlated (Cowley & Moodie, 
1957; Ishizuka, 1982) by 

¢~0(b, z + Az) = {exp[io:V(b)]C~0(b , z)} ® P(b), (36) 

where or' = (Ko/Ko:re/2Eo), where E0 is the incident 
electron energy. Since the projected potential of the 
crystal slice contains the time-dependent perturbation of 
atom thermal vibration, and it can be written as 
V = Vo + zaV, then (36) is rewritten as 

<P0(b, z + Az) = (exp[io:V0(b)]C~0(b, z) 

+ {exp[io:V(b)] 

-- exp[io:Vo(b)]}q~o(b, z)) ® P(b), 

(37) 

where the first term is Bragg scattering and the second 
term is TDS generated from the crystal slice and can be 
expressed as 

o. 
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Fig. 4. Plot of the function Si(~9)/O. 

zaC~(b, z) = iF(b, z)C~0(b, z), (38) 

where 

r (b ,  z) = -i{exp[io:V(b)] - exp[io:V0(b)]}. (39) 

If the subsequent diffraction of the diffusely scattered 
electrons is ignored, the intensity detected by the ADF 
detector may be approximately written as 

I = f du r(u, z.c ) ® ~o(U, znc) D(u) 

= E f du <[ r(u, z. c) ®  o(U, Z.c)] 
nc mc 

× [/-'*(u, Zm~) ® ~(u, zmc)])D(u ). (40) 

Using the Fourier transforms of F and ~o, the intensity 
detected by the ADF detector when the probe is scanned 
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to b e is 

ITos(bp) = ~ ~ f db f db' (l"(b',z.c)l"*(b, zm,)) 
nc mc 

x 4)o(b' - bp, z,~)~;(b - bp, Zm~)D(b - b'). 

(41) 

Equation (41) has included the contributions of multi- 
phonon and multiple phonon scattering. In general, the 
time average can be evaluated before any numerical 
calculation, 

<r(b',z')r*~,z)> 
= ({exp[io"V(b', z')] - exp[i~Vo(b', z')]} 

x {exp[-io"V(b, z)] - exp[-io"V0(b, z)]}) 

= exp{ioJ[Vo(b ', z') - V0(b, z)]} 

x ({exp[io"AV(b', z ' ) ] -  1} 

x {exp[-io",4 V (b, z)] - 1}) 

= exp{/o-'[Vo(b', z') - V0(b, z)]} ((exp{io"[A V(b', Z) 

- AV(b, z)]}) - {exp[io-'AV(b', z')]) 

- (exp[- - idAV(b ,z )] )  + 1) 

_~ exp{io~[V0(b ', z') - V0(b, z)]} 

x ( exp{-(o/Z/2)[(I AV(b ', z')l 2) 

+ (IzaV(b, z)l 2) - 2(AV(b',z')AV(b,z))]} 
- exp [ -  (o "z / 2) (1,4 V (b', z')lz>] 

- exp[-(on/2)(IzaV(b,z)12)] + 1). (42) 

(exp[io-'AV]) ~_ exp[-(a'z/2)(IAVl2>], The  relation 
provided (AV) = 0, was used in (42). The time average 
of the modulus crystal potential can be easily performed 
by expressing the atom potential as the Fourier transform 
of the atomic scattering factor, and the results are 

- 2zri(b - b e ) .  z ] { e x p [ 4 n ~ ( ( u  • u ~ ) ( z ,  u e ) ) ]  - 1}, 

( 4 4 )  

where the sums of K and tc' are limited to the atoms 
located in the crystal slices at depth z and z', respectively. 

To prove the equivalence of the theory proposed 
here with that illustrated in §2.1, the first-order TDS 
approximation is made, so that exp(icr'V) = exp(io"V0)x 
exp(icr'AV) ~_ exp(ioJV0)[1 + ioJAV]; thus, 

(FCo', z ' )F*(b,  z)) ~-- o "a exp{icr'[V0(b', z') - V0(b, z)]} 

x (AV(b',z')AV(b,z)). (45) 

If the phase-grating term exp{icr'[V0(b', Z) - V0(b, z)]} in 
(45) is ignored, (41) is thus approximated as 

I T D S ( b p )  ~ "  } 4rr2 ~12 ~ E f db f db' D(b - b') 
nc mc 

× (AU(b ' , znc)AU(b,  zmc))~o(b ' -  be, znc) 

x ~ ( b  - bp, Zm~ ). (46) 

This equation is identical to (17). 
The theory presented earlier by Wang & Cowley 

(1990) was based on the single-phonon scattering 
approximation, which retains only the IzaVl 2 term in 
(44). Under this approximation, (44) becomes 

([AV(b, z)] 2) ~ 47r2 ~ (I f du (u .  u~)fe(u) exp[-W~(u)] 
/ (  

x exp[2rri(b - b~). u]12). 

Thus, ([ZW(b, z)] 2) = 0 if b = b~, which means that the 
TDS generation function is zero at atomic core positions. 
This result is the consequence of the single-phonon 
scattering model. In numerical calculation, proper 
consideration of multiphonon processes [i.e. the higher- 
order terms in (44)] is important. 

([zSV(b, z)] 2) _~ }-][(IVk(b - b~, z)l 2) - V~k(b -- b~, z)] 
K 

_~ ~/du fdlrfe(u)f:*Or)exp[-W,~(u) 
/¢ 

- W,~0r)] exp[2rri(b - b~)-(u - It)] 

x {exp[47r2((u • u,)(z-  %:))] - 1} 

(43) 

and 

(AV(b',z')AV(b,z)) 
= ~ ~-'~[(Vk(b' - b,, ze)V,c,(b - be, z)) 

x x'  

- -  V 0 k ( b '  - b~, z')V0k,(b -- b e, z)] 

~' E E f du f d~r fe(u) ff0r) 
tc tc' 

x exp[-W~(u) - We(z)] exp[2Jri(b' - b,~). u 

3. Imaging using diffusely scattered electrons in 
TEM 

In HADF-TEM imaging (Bentley et al., 1990), a plane 
wave is assumed to strike the crystal entrance face at an 
angle 0 with respect to the optic axis (Fig. 5). The 
objective aperture is centered on the optic axis and allows 
the electrons scattered to a certain angular range to go 
through. The incident beam can be conically scanned 
around the optic axis in order to simulate the configura- 
tion of the ADF detector in STEM. The image obtained 
in this configuration is the average of the images 
obtained when the crystal is illuminated from different 
incident angles. Details regarding the image formation, 
experimental condition and dislocation contrast in 
HADF-TEM have been introduced previously (Wang, 
1994). Here we mainly concentrated on the effects of 
dynamical diffraction on the image contrast. 
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The contribution of TDS electrons to the HADF-TEM 
image is 

ITDs(b) = (J f db' 8~0(b', d)Tobj(b' - b)12), (47) 

w h e r e  Tob j = F{A(u) exp[irr(AAfu 2 + Cs~.U4/2)]} is the 
transfer function of the objective lens and objective 
aperture A(u), Af  is the lens defocus and C s is the lens 
spherical aberration coefficient. Substituting the wave 
function of the diffusely scattered electrons given by (10) 
into (47) results in 

I T o s ( b ) = 1 4 n ' 2 ( 1 2 ( ~ {  fdb'dfdz'T°bj(b'-b)o 

x Op(b', d - z')[AU,~(b' - b~, z' - z,~, t) 

x ~0(b', z')]} 12/. ( 4 8 )  

If the dynamical diffraction effect of a single atom layer 
is neglected following the same argument as for (13) to 
(14), the integration of z' can be directly applied to A U~. 
Equation (48) is thus approximated as 

14~(12( V { f db' Tobj(b '  - b) ITDs(b) 

x Op(b', d - z~)[AU~(b' -- b~, t) 

x $o(b', 

= 14zr2(I 2 E ~ f d b ' f d b "  Tobj(b'-b)T*bj(b"-b) 
x x' 

x ({Op(b', d - z~)[AU~(b' - b K, t)~0(b', z~)] 

O*(h" " t)~0(b , ze)]} ) x vp~_ , d - z e ) [ A U e ( b  - b  e , -* " 

: 147r2(I 2 ~ ~ f d b ' f d b "  Tobj(b'-b)T*bj(b"-b) 
r r '  

/ * /I / x Op(b, d-z , )Op(b  , d - z e ) { ( A U ~ ( b - b  ~, t) 

x AU~,(b" - b e, t))~o(b', -* " . z~)~0(b ,ze)} 

(49) 

The calculation of the HADF-TEM image is identical to 
that of HAADF-STEM if the transfer function 
Tobj(b ' -b)Tobj(b"-b)  is replaced by the detector 
function D(b' - b"). This is the result of the reciprocity 
theorem. Therefore, the discussions of cases a-e in 
§2.1.2 also apply to the TEM case. The approximation of 
ignoring the Bragg scattering after TDS (i.e. taking 
Op -- 1), however, does not hold in the TEM case owing 
to the small size of the objective aperture, thus the 
electron dynamical scattering out of the objective 
aperture becomes important. This is a key difference 
between HADF-TEM and HAADF-STEM. 

The contribution of Bragg and Huang scattering 
electrons to the HADF-TEM image can be calculated by 

le(b) = J f db' qb0(b', d)Tobj(b' - b) 2. (50) 

In the TEM case, the conical scan of the incident beam 
is equivalent to applying an average over the incident- 
beam direction in (49). 

The theory presented in this section can also be 
applied to calculate the image formed by TDS electrons 
in high-resolution transmission electron microscopy 
because no restriction was made on the incident angle 
0. Therefore, the theory covers all the practical experi- 
mental situations for both low- and high-angle diffuse 
scattering. 

4. Diffraction and Huang scattering effects in 
HADF-TEM 

4.1. Contrast mechanism 

Diffuse scattering can be generated by both TDS and 
Huang scattering. TDS can be excited from wherever 
there are atoms, but Huang scattering can only be 
generated from the regions containing imperfections, 
such as defects or dislocations. For a perfect crystal, and 
if the image resolution is not sufficient to resolve lattice 
planes, the contribution made by TDS would be a 
background in the HADF-TEM image. In this case, 
contrast can be introduced due to Huang scattering from 
the regions containing defects or dislocations. This result 
has been observed experimentally and an image contrast 
mechanism has been proposed (Wang, 1994), as shown 
in Fig. 6. The dislocation contrast in HADF-TEM is 
generated by a two-step mechanism: the creation of 
diffuse scattering due to lattice distortion around the 
dislocation cores and the subsequent channeling propa- 
gation of the diffusely scattered electrons parallel or 
almost parallel to the optic axis, as governed by 

',, : / 
\ I /incident electron beam 

\\ I o /  

objective aperture 

Fig. 5. Schematic diagram showing the formation of a Z-contrast image 
in TEM. 
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dynamical diffraction effects. The creation of local 
diffuse scattering is determined by the first step and the 
final image contrast is essentially determined by the 
second step. We now express the contrast mechanism 
into mathematical form. 

Equation (49) can be modified to calculate the image 
formed by Huang scattering. For simplification, we 
assume that the spherical aberration coefficient C s = 0, 
i.e. T o b j ( b ' - b ) = 6 ( b ' - b ) .  This is an excellent 
approximation for diffraction contrast imaging. Huang 
scattering is different from TDS in the way that the 
scattering from one atom site has no phase correlation 
with the scattering from the other atom sites. Based on 
(49), the image formed by Huang scattered electrons can 
be calculated by 

_~ dz Op(b, a - z ) a U ( b ,  Z)~o(b, z) In(b) 14~'12 

(51a) 

with 

AU(r) = y']~{U~[r - r~ - R(r)] - U~(r - r~)}, (51b) 
/¢ 

where ~o is the wave function of the incident electron, 
A U is the distorted crystal potential due to local lattice 
displacement R(r) introduced by defects; the product 
[4n'zgzaU~0] is the diffuse scattering generated at depth 
z; the subsequent dynamical scattering of the Huang 
scattered electrons is governed by the Op operator (see 
§2.1.3). The integration on z sums over all the diffuse 
scattering generated in the entire crystal thickness. We 
now apply the Bloch-wave theory to perform the Op 
calculation. 

Incident beam 

Dislocation l i n e  / 

 Z' zl 

Large-angle diffusely 
scattered electrons 

Fig. 6. Schematic diagram showing the contrast mechanism of HADF- 
TEM (see text). The dashed line indicates a column to be used for 
image calculation. 

In HADF-TEM, since the angle between the incident 
electron beam and the optic axis of the microscope is 
large (> 50mrad for 100keV electrons), no strong 
dynamical scattering is expected if the beam direction 
is far from crystal zone axes so that the incident electron 
wave is assumed to be a plane wave when it strikes the 
defect, i.e. g%(b, z) ~-- exp[2zriK b • b + 2rriKzz], where 
K o is the projection of the electron wave vector in the xy 
plane. After being diffusely scattered by the defect, the 
electrons that contribute to the HADF-TEM image are 
those propagating parallel or nearly parallel to the optic 
axis so that the column approximation can be made, as 
shown in Fig. 6. For each column, the diffuse scattering 
at the entrance of the column is [4zr2(AU~0(b, z)] and 
the wave in the column can be expressed in Bloch waves 
as 

qs(K, r) = ~ ~i(b) y~ C~ i) exp[2niKzz + 2nig . b 
i g 

+ 27rivi(z- zl) ], (52) 

where z 1 is the depth of the defect region, v i is the 
eigenvalue of the Bloch wave i, and g is a reciprocal- 
space lattice vector. If the boundary condition 
qt(K, r ) =  4rr2(AU(b)Oo(b, z) is maehed at the top of 
the column z = z 1, where AU(b) = fdzzaU(b, z) is the 
projeizted perturbation potential, the t~i(b) coefficient can 
be determined as 

c~i(b) = 4 Jr2 t2C(oi)* A U (b ). (53) 

If the on-axis objective aperture selects only the g = 0 
reflection, the intensity of the image is 

In = [~i oti(b)C~O exp[27rivi(d - zl)][ 2 

14a~'12[AU(b)] 2 cg *cg  exp[2mv,(d z1) 

4) 

To see the meaning of (.54), the two-beam approxima- 
tion is made. With the C~ ° coefficients given by Hirsch, 
Howie, Nicholson, Pashley & Whelan (1977), 

In = 14rr2~L2[AU(b)]2{1- sin 2 go Sin2[nAv(d- zl)]}, 

(55a) 

where 

Av = v 1 -- v 2 = [(KSs) 2 + IUgl2]I/2/gz, (55b) 

F0 = arcctan(KSg/IUsl), Ug is the Fourier coefficient of 
U and Sg is the excitation error. Equations (55) show that 
the contrast in the HADF-TEM image can be produced 
by four sources: (1) The spatial variation of AU owing to 
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different degrees of  local lattice distortion. This effect is crystal orientation as a result o f  crystal bending, for 
useful for the identification of  dislocation cores. (2) The example,  leading to the change of  excitation error S e (or 
change of  diffracting condition owing to the variation of  Y0).  This effect has been observed in the following 

~- Y' t :  ~ ,  'r'/ t .  q , ,  

" j r~, . . ,  e~T~ ¢ .L,~ 

Fig. 7. Diffraction effect in dark-field imaging using diffusely scattered electrons: (a) is a double exposed electron diffraction pattern of a gold film, 
and (b) and (c) are the bright-field and dark-field images of the film, respectively. The arrowhead in (a) indicates the position and size of the 
objective aperture used to record the image in (c). Electron beam energy 300 keV. 
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exper iments .  (3) The  dep th  z~ o f  the  d i s loca t ion  can 
in t roduce  s o m e  t h i c k n e s s - d e p e n d e n t  effect ,  m a k i n g  it 
poss ib le  to iden t i fy  the  h e a d  and  tail o f  a d i s loca t ion  l ine 

(Wang ,  1994). (4) The  variat ion o f  the inc iden t -beam 
di rec t ion  in t roduces  a s l ight  change  in K z. This  m a y  also 
g ive  s o m e  contras t  accord ing  to (55a).  

¢ 

O = 72 mrad 

° ° 

" ~ " - - ~  A ~ I ~  "" - ~  S --"..  " ~ - ~  

. 

IY e. ,  

. p k  

t 

Fig. 8. Dark-field images of the gold film recorded at azimuth angles (a) ~0 = 0, (b) ~0 = 45 and (c) ~0 = 90 ° and conical angle 0 = 72 mrad, showing 
the variation of image contrast with the change of incident-beam direction. The double exposed diffraction patterns for each case are shown on 
the left-hand side. Electron beam energy 300 keV. 
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For Bragg reflection, so that the excitation error 
Sg = 0, (55a) reduces to 

l~t = {14n~12[AU(b)]2}cos2[zrAv(d  -- Zl)]. (56) 

This equation has the same form as that for conventional 
on-axis bright-field diffraction contrast imaging (Hirsch 
et al., 1977): 

I 0 -- cos2(n'dAv). (57) 

Therefore, the HADF-TEM shares many characteristics 
with the conventional diffraction contrast imaging. The 
thickness dependence of the two types of images may be 
different, however. 

4.2. Exper imenta l  observat ions  

Dynamical diffraction effects are easily seen in the 
HADF-TEM because of its flexibility of controlling the 
diffracting condition so that only the diffusely scattered 
electrons are selected to form the image. Fig. 7(a) shows 
a double exposed electron diffraction pattern of a single- 
crystalline gold foil oriented near the [100] zone axis. 
Fig. 7(b) is a bright-field image of the foil and Fig. 7(c) is 
the corresponding dark-field image recorded using the 
diffusely scattered electrons as indicated by an arrow- 
head in Fig. 7(a). In the diffraction pattern, (100) streaks 
produced by TDS are deafly seen. The bright-field 
image shows some bending and strain contrast. Most of 
the features observed in the bright-field image are shown 

a 

i" 

Fig. 9. (a) Bright-field and (b) conical-scan HADF-TEM images of a silver film, showing the interference fringes at the inclined { 111 } twin 
boundaries. Conical angle 0 = 72 mrad, electron beam energy 300 keV. 
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in the dark-field image of the diffusely scattered 
electrons. The contrast in Figs. 7(b) and (c) is reversed 
and the figures appear to be complementary in contrast. 
This observation clearly shows the importance of the 
diffraction effect in the imaging of diffusely scattered 
electrons, and it also shows the similarity of HADF-TEM 
with a conventional bright-field diffraction contrast 
image, as expected theoretically according to (56) and 
(57). 

To further check the diffraction effect in HADF-TEM, 
the gold foil was tilted to the [100] zone axis so that the 
objective aperture is placed exactly on the [100] pole. 
Fig. 8 shows dark-field images of the gold foil recorded 
when the incident beam was stopped at three azimuth 
positions. The double exposed diffraction pattern for 
each image is shown on the left-hand side. It is apparent 
that the three images have different contrast distributions 
due to slight variation of diffracting condition (or Sg). 
This observation again shows the diffraction effect in 
HADF-TEM imaging, in agreement with the theoreti- 
cally expected result (55a). In practice, if the image is 
recorded under continuous conical scan, the observed 
image contrast is an average of the contrast for each scan 
position. 

Fig. 9 shows bright-field and conical scan HADF- 
TEM images of a silver foil that contains inclined { 111 } 
twin boundaries. The interference fringes of the twin 
boundaries are observed not only in the bright-field 
image but also in the conical-scan HADF-TEM image. 
The fringe contrast is complementary in both images. 
This observation agrees with the prediction of the theory 
illustrated in the last section. 

The experimental data shown in this section demon- 
strate clearly the vital effect of dynamical diffraction in 
atomic number sensitive imaging using diffusely scat- 
tered electrons. It is thus necessary to include this effect 
in the image calculation following the dynamical theories 
proposed in ~ 2  and 3. 

5. Concluding remarks 

In this paper, 'exact' dynamical theories of atomic 
number sensitive images (or Z-contrast images) formed 
by thermal diffusely scattered (TDS) electrons are 
proposed based on first-principles considerations. The 
theories are derived for simulating the images obtained 
either in scanning transmission electron microscopy 
(STEM) using an annular dark-field detector or in 
transmission electron microscopy (TEM) using an on- 
axis objective aperture under hollow-cone beam 
illumination. No approximation was made in treating 
the thermal vibration of the crystal atoms. The time 
average of the signal intensities contributed by the 
thermal diffuse scattering of various instantaneous crystal 
lattice configurations has been performed before numeri- 
cal calculation. The following effects are comprehen- 

sively covered in the theory: dynamical diffraction of the 
beam before and after TDS, thickness-dependent beam 
broadening or channeling, Huang scattering from defect 
regions, coherence of the thermal diffusely scattered 
electrons generated from the atomic layers packed within 
the coherent length, multiphonon and multiple phonon 
excitations, and the detection geometry. The theory is 
formulated in the multislice scheme that is best suited for 
practical numerical calculations, especially when defects 
and interfaces are involved. The coherent length in the z 
direction varies with the change of atomic mass in the 
column. It is thus possible that the z coherence may 
disappear for heavy elements. 

Other simplified theories have been derived from this 
unified theory under various approximations. It has been 
shown that the incoherent imaging theory is a very 
simplified case of the practical imaging condition and it 
can be applied only for qualitative image interpretation. 
Finally, the theory of Huang scattering in HADF-TEM 
imaging was illustrated. The theoretically expected 
results have been observed experimentally. 
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